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Effective magnetic permeability of granular ferromagnetic 
metals 
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Lilwntoire d'Oplique des Solides, Univenili Pierre el Marie Curie, 4 place Jusieu, 
Paris Cidex 05, France 

Received 20 July 1992 

AbslrscL ?he elfeclive magnetic permrabilily I L  and effeclive dielectric mnstant L are 
two equally important quantities for the ~liaraclrrizntion of elec~romagnelic properties 
of "nporilrs. For granular femmagnelic melals, however, the presence of permanen1 
magnetic moments means that lhe Munvrll-Game11 theory Is inapplicable lo the 
cillculalion OC effective I,. By extending the approach 4 Onsager, we derive a simple 
qualion for ~r wllose numerical mlulion in lhe case of granular Ni  sl~ows significant 
devinlion from unity in far-infnrcd and microwave frequencies. The kl~aviour of 1, is 
prcdiclrd to I* a semilive function of pmicle Size and temperature, thus making the 
malerial pentinl ly uuhlr as an ahwrhrr of far-infrared or micmvavc ndiation. 

1. Introduction 

When the scale of inhomogeneities in a composite materid is much less than the 
wavelength of the prohing electromagnetic radiation, lack of scattering makes the 
composite appear as a homogeneous medium characterized by effective material 
properties. The function of an effective medium theory is to relate the effective 
material properties to those of the wmponents and their microstructures. In the 
case of the effective dielectric constant of metallic particles dispersed in an insulating 
matrix, the well known Maxwell-Garnett theory has heen successful in achieving this 
role (Garnett 1904). Theoretically, the effective magnetic permeability is a quantity 
exactly analogous to the dielectric constant and should therefore he calculahle hy 
the same approach (Lamb el a/ 1980). However: rn the extenr that  the Maxwell- 
Garnett theory is based on the Clausius-Mossotti (CM) relation, it cannot describe 
the case in which one component of the composite possesses permanent moments. 
This is due to the prohlem of plarization catastrophe where the CM relation predicts 
a polarization divergence for all materials possessing permanent moments, but this 
is rarely seen. resolve this problem, Onsager (1936) presented a new, albeit 
slightly more complicated theory where the role of permanent moments is properly 
taken into account. It is the purpose of this paper to present a simple extension 
of the Onsager theory for the calculation of the effective magnetic permeability of 
granular ferromagnetic metals. The theory takes into account both the induced 
magnetic moment of a conducting particle as well as the orientational alignment of 
ferromagnetic moments. 
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2. Formulation 

Considcr a composite consisting of metallic ferromagnetic particles of size 50- 
200 8, dispcrsed in an insulating matrix. The  composite is assumed to he  at 
a temperature much lower than the ferromagnetic transition temperature so that 
saturation magnetization is achieved in each particle. Furthermore, the grains a re  
assumed to he sufficiently small so that each grain has only one  magnetic domain. 
Since the wavelength of electromagnetic radiation in the optical to far-infrared 
range is orders of magnitude larger than either the grain size or the average inter- 
grain separation, it follows that one  can use the quasi-static approximation for the 
treatment of the electromagnetic field with regard to its interaction with the metallic 
ferromagnetic particles. 

In a quasi-static magnetic field, the magnetization of the composite can result 
from two sources: (i) the orientational alignment of the ferromagnetic moments, and 
(ii) the induced magnetic moments due to the eddy currents. To proceed with the 
formulation of the prohlem, let U first focus our attention on a single particle of 
radius (1. The magnetization is given hy 

P Stieng and M Gadenne 

? I I  = ?ll"l? + n F  (1) 

where ?nu is the ferromagnetic moment of the particle, I; is a unit vector along 
the direction of the ferromagnetic moment, rk is the magnetic polarizability of the 
particle, and F is the local magnetic field. The  quantity CI has been calculated in the 
literature (Landau and Lifshitz 1960) and is given by 

n = (4ir/3)n3(cI'+ i 2 ' )  (k) 
3 1 s inh (2z j  -sin(2:cj 
2 z w s h ( 2 2 )  - cos(22) Sir 

sinh(2z) + sin(2z) 
cosh(22) - cos(2z) 

1 - :E 

z = n / 6 ,  6 = c / J ( 2 ~ n w )  is the skin depth, c denotes the speed of light, n 
denotes the conductivity of the particle, and we have taken the relative magnetic 
permeability of pure metal to he 1. Onsager's insightful contribution (Onsager 1936) 
lies in his analysis of the local field F as composed of two components: the cavity- 
field component G and the reaction-field component R. Both components can 
he obtained hy solving well defined boundary-value problcms. T i e  results, when 
comhincd together, give 

F = G + R = [ 3 / ~ / ( 2 p  + 1)]H + [ 2 ( p  - 1 ) / ( 2 ~ ~  + I)n']?lL. (3) 

Here H is the externally applied magnetic field and p is the cffective magnetic 
permeahility. Suhstitution of equation (3) into equation (1) gives 

The coelficient of iL in equation (4) is seen to differ from T I I "  mainly due  to the 
reaction-field effect, which renormalizes  TIL^, If the material is made completely 
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of ferromagnetic metallic particles, then M = N ( ~ J L ) ,  where N is the numher of 
particles per unit volume, and ( ) denotes thermodynamic averaging. By definition 

M = [ ( A I  - 1)/47r]H 

which means 

- 
/ L  - I - H  = 471 

?nU(li)3(2/1 + 1) + 9/1&H 
3(2/1 + 1) - 8 ~ ( p  - l)& ’ 

Here  ”; is the  saturation magnetization, or  magnetic moment per unit volume. The 
quantity (6) is calculated by following Onsager’s approach. We obtain 

p”;47ra3H (4.) = 
kT[3(2/1 + 1) - S7r(p - l )&]  

for a DC applied licld. Here k is Boltzmann’s constant, and T is the temperature. 
The main point to he noted in the derivation of equation (5b) is that only the  cavity- 
field component G has any effect on the moment. The reaction field It is always 
parallel to ~ J L  and therefore exerts no torque on the particle. At linite frequencies, 
( 7 2 )  has to be multiplied by a factor ~ ( w )  due  to the finite orientational relaxation 
time of the magnetic moments, where 

~ ( w )  = (1 - iwT)-’ (54 

represents the Dchye relaxation response function, and 

r = r , e x p ( l i V / k T )  (54 

is the relaxation time for the orientational alignmcnt of the ferromagnetic moments 
(Xiao cl a1 1986). In equation (U), Ii represents the anisotropy enefgy per unit 
volume, and V = 471ii3/3 is the volume of the particle. By suhstituting equation (%), 
with the additional ~ ( w )  factor, into equation (5n), a self-consistent equation for f i  
is ohtained: 

lL - I - 9 / 1 ( 2 / ~  + 1) (7i1$47ra3/3kT) 911 & -- 
471 [3(2/L + I )  - S X ( / L  - I)&]2 + 3(2/L + 1) - 871(ll - I ) & ’  

At this point we would like to make the transition to the case of a composite. It 
is noted that whereas a is the induced magnetic polarizability, ?n;/3kT represents 
the polarizability of permanent magnetic moments through orientational alignment. 
Both have the dimension of volume. This means that in a composite where the 
ferromagnetic particles occupy only a fraction of the total volume, the dimensionless 
quantities & and (4xn3?ii;/9kT), which are normalizcd per unit volumc, should he 
written as f &  and f(4?rci3?ii;/9kT), respectively. Therefore, the equation for the 
effective 11 of the composite is 

11 - 1 - 9f/1(2p + 1) (47ra3?k;/3kT) 9f/L& + (6) [3(2/L + 1)  - 871(/L - I ) f & ] 2  3(2/L + 1) - S7r(/L - I )& f ’ 
-- 

47r 
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Equation (6) can he rearranged to give a third-order polynomial equation for ,I with 
complex coelficients: 

P Sheng and M Gadennc 

 AIL^ + B/I' + C p  + D = 0 

A = 4 (9 + 16n2f2&' - 24nfir) 

B = -24n f [& (3 - 4 n f i r )  + 3 R g ( w ) ]  

(7.) 

(76) 

(74 

(74  

D = - [9+  16rrirf(3+4rrirf)] (74 

2 - 2  2 C = -3 [32n c1 f + 12rrf(Rg(w) + 3rC) + 91 

and R = (47ra37iii/3kT). Since there are three solutions to equation (7), the 
physical one is selected by the  condition that R e p  > 0 and I m p  > 0. If  one  sets 
R = 0, it is easy to verify that satisfies the Maxwell-Garnett theory, or the C M  
relation, ( p  - I ) / ( / I  + 2) = 4nir f / 3 ,  as expected. 

3. Numerical solution for gnnulnr Ni 

We consider granular Ni with particle size of the order of 100 A ( a  = 50 A). For 
Ni, (s = 1.43 x los (52 cm)-', 7ir; Y 480 G so that R Y 3 at room temperature, and 
T zz 48 x IO-" s is obtained from equation (5d) with ru 2 s (Xiao cf a1 1986), 
li Y 5 x 10' erg (Bozorth, 1951) and T = 300 K. In figure 1(a) we show the  
real and imaginary parts of p as a function of f for X = 500 L m .  For comparison, 
we plot in figure I(h) the j L  obtained from the CM relation with ir replaced by 
(& + Rg/3 ) .  The  ditierence in predicted behaviours is striking. For the CM case, 
the r e d  part even changes sign as a [unction of f. This is unphysical, demonstrating 
the inapplicability of the CM relation in the present case. 

I I 

Figure 1. Vie effective magnetic permeability ,I a t  5W , ~ m  wavelength, plotted as a 
funclion of ferromagnetic metal w l u m e  Incl ion f. (0)  Real and  imaginary parts Of 
,L calculated G-om the present theory will) Ni parameters given in the text. (b) Real 
and imaginary p a n s  of ,i calculated from ~ h r  direct a tens ion  of the Clausius-Mossntti 
rcliilion. 
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Figure 2. The eRrctive magnetic permeability p 
calculated at f = 0.2 as a function of wavelength, 
with p m m e t e n  p i i n r n t  to 100 A Ni panicles at 
mom temperature. 

1 

0 

4oLotiin"m, 

Figure 3. The enective magnetic permeability p 
calculated at f = 0.2 a5 a funclion of wavelenglh, 
with prametcn peninent to 100 A Ni panicles at 
T=ZKlK 

In figure 2, the frequency dependence of 11 is shown for f = 0.2. At X 2 1 pm 
the real part of [L is seen to be less than 1, with an attendant increase in I m p .  
This is due to the induced magnetic momcnt associated with the eddy currents. 
Since the effect is diamagnetic, it accounts for the slight decrease in R e p  from 
unity. The  most significant feature, howcver, is the large deviation from unity a t  far- 
infrared frequencics, which is due  to the orientational alignment of the ferromagnetic 
moments. Since T and R. are both functions of tempcrature T and particle size a ,  
both the magnitude and frequency dcpcndencc of h i  a t  this frequency regime can 
he tuned hy varying these parameters. For example, hy lowering the temperature, 
one expects the pcak of Im /L to shift to microwave frequencies. At the same time, 
lowering the tempcrature also hds the effect of increasing R. One  thus expects 
the magnitudc of the I m p  peak to increase as T dccreases. Figure 3 illustrates 
this temperature cffcct through the  frequency dependence of p a t  f = 0.2 and 
T = 200 K, where T = 3 x s is ohtained from equation (5d) with T" 2 IO-" s 
and I< 2 3 x lo5 erg c w 3  a t  this temperature (Bozorth, 1951). The  value of R 
is increased to 4.5. O n e  sees directly that the magnetic absorption peak is now in 
the microwave regime, and the effect is larger than that at 300 K. These results thus 
provide direct predictions on the behaviour of fcrromagnetic granular metals that 
could be experimentally tested. 

4. Concluding remarks 

By following Onsager's approach, we have dcrived an equation for the effective 
magnetic permeability of granular ferromagnetic metal whose predictions differ 
signilicantly from those of the Maxwell-Garnctt theory, or the CM relation. 
Numerical calculation shows granular ferromagnetic metals to bo a temperature- 
tunable absorber of far-infrared and microwave radiations. Experimental verification 
of these predictions k presently underway. 
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