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Effective magnetic permeability of granular ferromagnetic
metals
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Paris Cédex 03, France

Received 20 July 1992

Abstract. The effective magnetic permeability ;o and effective dielectric constant € are
two equally important quantities for the characterization of electromagnetic properties
of composites, For granular femromagnelic metals, however, the presence of permanent
magnetic moments means that the Maxwell-Garnent theory is inapplicable to the
calculation of effective p. By extending the approach of Onsager, we derive a simple
equation for y whose numerical solution in the case of granular Ni shows significant
deviation from unity in far-infrared and microwave frequencies. The behaviour of e is
predicted to be a sensilive function of particle size and temperature, thus making the
material potentially usable as an absorber of far-infrared or microwave radiation.

1. Introduction

When the scale of inhomogeneities in a composite material is much less than the
wavelength of the probing electromagnetic radiation, lack of scattering makes the
composite appear as a homogcneous medium characterized by effective material
properties. The function of an effective medium theory is to relate the effective
material properties to those of the components and their microstructures. In the
case of the effective dielectric constant of metallic particles dispersed in an insulating
matrix, the well known Maxwell-Garnett theory has been successful in achieving this
role (Garnett 1904). Theoretically, the effective magnetic permeability is a quantity
exactly analogous to the dielectric constant and should therefore be calculable by
the same approach (Lamb et al 1980). However, to the extent that the Maxwell-
Garnett theory is based on the Clausius—Mossotti (CM) relation, it cannot describe
the case in which one component of the composite possesse€s permaneént moments.
This is due to the problem of polarization catastrophe where the CM relation predicts
a polarization divergence for all materials possessing permanent moments, but this
is rarely seen. TO resolve this problem, Onsager (1936) presented a new, albeit
slightly more complicated theory where the role of permancnt moments is properly
taken into account. It is the purpose of this paper to present a simple extension
of the Onsager theory for the calculation of the effective magnetic permeability of
granular ferromagnetic metals, The theory takes into account both the induced
magnetic moment of a conducting particle as well as the orientational alignment of
ferromagnetic moments.
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2. Formulation

Consider a composite consisting of metallic ferromagnetic particles of size 50~
200 A dispersed in an insulating matrix. The composite is assumed to be at
a temperature much lower than the ferromagnetic transition temperature so that
saturation magnetization is achieved in each particle. Furthermore, the grains are
assumed to be sufliciently small so that each grain has only one magnetic domain,
Since the wavelength of clectromagnetic radiation in the optical to far-infrared
range is orders of magnitude larger than either the grain size or the average inter-
grain separation, it [ollows that one can use the quasi-static approximation for the
treatment of the electromagnetic field with regard to its interaction with the metallic
ferromagnetic particles.

In a quasi-static magnetic field, the magnetization of the composite can result
from two sources: (i) the orientational alignment of the ferromagnetic moments, and
(i) the induced magnetic moments due to the eddy currents. To proceed with the
formulation of the problem, let us first focus our attention on a single particle of
radius a. The magnetization is given by

m = myit + aF (1)

where iy is the ferromagnetic moment of the particle, 4 is a unit vector along
the direction of the ferromagnetic moment, « is the magnetic polarizability of the
particle, and F is the local magnetic field. The quantity « has been calculated in the
literature (Landau and Lifshitz 1960) and is given by

o = (4x/3)a’ (o + ia”) (2a)
. _ 3 (. 31sinh(22)—sin(2e)

T T8 (1 2 z cosh(2zx) - COS(Z:I,')) @)
- 9 _sinh{2x) 4 sin(2x)

T T Tonal (1 ~ *oosh(2z) — cos(2:r;)) @)

z = afb, § = ¢/ /(2row) is the skin depth, ¢ denotes the speed of light, &
denotes the conductivity of the particle, and we have taken the relative magnetic
permeability of pure metal to be 1. Onsager’s insightful contribution (Onsager 19306)
lics in his analysis of the local field F as composced of two components: the cavity-
ficld component & and the reaction-field component IR, Both components can
be obtained by solving well defined boundary-value problems. The results, when
combined together, give

F=G+R=[u/Qu+ D]H+[2(x — 1)/ (2 + D’]m. (3)

Here H is the externally applicd magnetic field and p is the cffective magnetic
permeability. Substitution of equation (3) into equation (1) gives

— —1
_ 8r(p — DHa\™", 3 ( _8#(,{5—1)&) " 4
nme= 1y (IHW) H+—2—L—+—_—'I—Q 1 —"—'—3(2#-}_1) . ( )

The coeflicient of 4 in equation (4) is scen to differ from m; mainly due to the
reaction-field effect, which renormalizes m,. If the matcrial is made completely
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of ferromagnetic metallic particles, then M = N{m}, where N is the number of
particles per unit volume, and () denotes thermodynamic averaging. By definition

M=[(p—1)/4=x]H
which means

=1 ()32 + 1) + Y& H

47 T O32u 4+ 1) —8x(u— Da ©a)

Here 77 is the saturation magnetization, or magnetic moment per unit volume. The
quantity (i) is calculated by following Onsager’s approach. We obtain

pmgdra® H
AT 32+ 1) — 8n(p — 1)&]

(6) = (5b)
for a DC applied ficld. Here & is Boltzmann's constant, and T is the temperature.
The main point to be noted in the derivation of cquation (5b) is that only the cavity-
field component G has any cffect on the moment. The reaction field It is always
parallet to m and therefore exerts no torque on the particle. At finite frequencies,
(i) has to be multiplied by a factor g{w) due to the finite orientational relaxation
time of the magnetic moments, where

g{w) = (1—iwr)™! (5¢)
represents the Debye relaxation response function, and
r = ryexp( K V/LT) ' (5d)

is the relaxation time for the orientational alignment of the ferromagnetic moments
(Xiao et al 1986). In equation (5d), K represcnts the anisotropy energy per unit
volume, and V = 4ra®/3 is the volume of the particte. By substituting equation (5b),
with the additional g(w) factor, into equation (5a), a self-consistent equation for
is obtained:

w—1_ 9u(2u+1) (1?1%47ra3/3A:T) + 9
4 BRu+1) —8x(r—1a)  32u+1) —8r(p— D&’

At this point we would like to make the transition to the case of a composite. It
is noted that whereas « is the induced magnetic polarizability, m3/3&T represents
the polarizability of permanent magnetic moments through orientational alignment.
Both have the dimension of volume. This means that in a composite where the
ferromagnetic particles occupy only a fraction of the total volume, the dimensionless
quantities & and (4w’ /94T), which are normalized per unit volume, should be
written as f& and f(dma®mi/9kT), respectively. Therefore, the equation for the
effective p of the composite is

p-1_9fu(2u+1) (dmwa®m? /35T) 9f i
dr T BRu+ D =8r(p-Df&]2 " 32u+1) —8n(u - &S

(©)
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Equation (6) can be rearranged to give a third-order polynomial equation for u with
complex coeflicients:

A+ Bp*+ Cu+ D=0

(7a)
A=4(9+ 1677 f2a° —24n f&) (Tb)
B = -24r f[&(3 -4 f&) + 3Rg(w)) (7c)
C = -3[3272&% f* + 127 f (Rg(w) + 3&) + 9] (7d)
D=—[9416naf (3 +4naf)] (7e)

and R = (4wa®mi/3kT). Since there are three solutions to equation (7), the
physical one is selected by the condition that Rep > 0 and Imy > 0. If one sets
R =0, it is easy to verify that u satisfies the Maxwell-Garnett theory, or the CM
relation, (i — 1)/ (1t +2) = 4mé& f /3, as expected.

3. Numerical solution for granular Ni

We consider granular Ni with particle sizc of the order of 100 A (¢ = 50 A). For
Ni, ¢ = 1.43 x 10° (Q cm)~!, 7, ~ 480 G so that R ~ 3 at room temperature, and
7= 48 x 10~ s is obtained from equation (54) with 7, ~ 107'* s (Xiao er al 1986),
K ~5x 10° erg cm~? (Bozorth, 1951) and T = 300 K In figure 1(a) we show the
real and imaginary parts of x as a function of f for A = 500 pm. For comparison,
we plot in figure 1(b) the p obtained from the CM relation with & replaced by
{& + Rg/3). The difference in predicted behaviours is striking, For the CM case,
the real part even changes sign as a function of f. This is unphysical, demonstrating
the inapplicability of the CM relation in the present case.

7 T T T T T T 5 T T T T
6 (&) o al () e i
- ’.\ e
5k I 4 3 o Imaginary Part -]
Real Panl - .
< - -f‘/ ERERE Feal Part -
-
.t - i - B e -
o - Chan kY
P - et \\‘ Imaginary Part | .
- - 1 b ., 4
. o .
1" "_.' i 2l . N ]
L " \‘H
o e L " ! 1 i I L L s
0.00 0.10 0.20 0.30 0.40 0.50 0.00 0.10 0.20 0.30 o.a0 0.50

Figure 1. The effective magnctic permeability g at 500 pm wavelength, plotted as a
function of ferromagnetic metal volume fraction f. (4) Real and imaginary paris of
st calculated from the present Lheory with Ni parameters given in the text. (b) Real
and imaginary parts of g calculated from the direct extension of the Clausius—Mossotli
relation.
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Figure 2. The effective magnetic permeability »  Figure 3. The effective magnetic permeability g
calculated at f = 0.2 as a function of wavelength, catculated at f = 0.2 as a function of wavelength,
with parameters periinent to 100 A Ni particles at  with parameters pertinent to 100 A Ni particles at
room temperature. T=20K

In figure 2, the frequency dependence of 4 is shown for f = 0.2, At A 1 um
the real part of p is seen to be less than 1, with an attendant increase in Im pu.
This is due to the induced magnetic moment associated with the eddy currents.
Since the effect is diamagnetic, it accounts for the slight decrease in Rep from
unity. The most significant feature, however, i8 the large deviation from unity at far-
infrared frequencies, which is due to the orientational alignment of the ferromagnetic
moments. Since T and R are both functions of temperature T and particle size a,
both the magnitude and frequency dependence of g at this frequency regime can
be tuned by varying these parameters. For example, by lowering the temperature,
one expects the peak of Im p to shift to microwave frequencies. At the same time,
lowering the temperature also has the effect of increasing R. One thus expects
the magnitude of the Im g peak to increase as T decreases. Figure 3 illustrates
this temperature cffect through the frequency dependence of 4 at f = 0.2 and
T = 200 K, where 7 = 3 x 10~ 5 is obtained from equation (54) with 7, ~ 10~ 5
and ' ~ 3 x 10° erg cm~? at this temperature (Bozorth, 1951). The value of R
is increased to 4.5. One sees directly that the magnetic absorption peak is now in
the microwave regime, and the effect is larger than that at 300 K These results thus
provide direct predictions on the bchaviour of ferromagnetic granular metals that
could be experimentally tested.

4, Concluding remarks

By following Onsager’s approach, we have derived an equation for the effective
magnetic permeability of granular ferromagnetic metal whose predictions differ
significantly from those of the Maxwell-Garnctt theory, or the CM relation.
Numerical calculation shows granular ferromagnetic metals to be a temperature-
tunable absorber of far-infrared and microwave radiations. Experimental verification
of thesc predictions iS presently underway.
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